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(X(@®) [ [x0, 2]} = 3, xP(x,t| x0,t0) ,

au + bA + e @n=to) [ au +ba
u+a H+a )

(3.8.91)

The variance can also be computed but is a very messy expression.
b) Stationary Solutions: This process has the stationary solution obtained by letting
g — —o00:

u A
Pya) = —, Pyb) = —,
(@) T+ i s(b) 1 (3.8.92)
which is obvious from the master equation.
The stationary mean and variance are

au + ba

X)s = —

(X) e (3.8.93)
(a-b)ui

var {X}s = NEEVEE (3.8.94)

¢) Stationary Correlation Functions: To compute the stationary time correlation
function, let ¢ > s, and write

XOX(5))s = X xx'Plx, t]x', 5)Py(X'), (3.8.95)
= gx'<X(t) [, s])Py(x") . (3.8.96)
Now use (3.8.91-3.8.94) to obtain
(X(OX(5))s = (X)3 + exp[—(A + p)(t — $)]((X2)s — XD, (3.8.97)
(au+ba\ ~ (a - b)*ul
= ( ) ) +exp[—(A + p)(t - e s (3.8.98)
Hence,
_ 2 (a- b)zﬂ’l A+u)|t—s|
(X(@), X(9))s = XOX(5))s = (X)2 = TR eltl=st, (3.8.99)

Notice that this time correlation function is of exactly the same form as that of the
Ornstein-Uhlenbeck process. Higher-order correlation functions are not the same of
course, but because of this simple correlation function and the simplicity of the two
State process, the random telegraph signal also finds wide application in model build-
ing.

4. The Ito Calculus and Stochastic
Differential Equations

4.1 Motivation

In Sect.1.2.2 we met for the first time the equation which is the prototype of what
is now known as a Langevin equation, which can be described heuristically as an
ordinary differential equation in which a rapidly and irregularly fluctuating random
function of time [the term X(¢) in Langevin’s original equation] occurs. The simplic-
ity of Langevin’s derivation of Einstein’s results is in itself sufficient motivation to
attempt to put the concept of such an equation on a reasonably precise footing.

The simple-minded Langevin equation that turns up most often can be written in
the form

dx

dt
where x is the variable of interest, a(x, t) and b(x, t) are certain known functions and
£(t) is the rapidly fluctuating random term. An idealised mathematical formulation
of the concept of a “rapidly varying, highly irregular function” is that for ¢ # ¢, £(r)
and &(¢') are statistically independent. We also require (£(f)) = 0, since any nonzero
mean can be absorbed into the definition of a(x, ¢), and thus require that

(EE)) =06 -1), 4.1.2)

which satisfies the requirement of no correlation at different times and furthermore,
has the rather pathological result that £(¢) has infinite variance. From a realistic point
of view, we know that no quantity can have such an infinite variance, but the con-
cept of white noise as an idealisation of a realistic fluctuating signal does have some
meaning, and has already been mentioned in Sect. 1.5.2 in connection with Johnson
noise in electrical circuits. We have already met two sources which might be consid-
ered realistic versions of almost uncorrelated noise, namely, the Ornstein-Uhlenbeck
process and the random telegraph signal. For both of these the second-order correla-
tion function can, up to a constant factor, be put in the form

=a(x, 1) + b(x, 1)E) , 4.1.1)

XX = L, (4.13)

Now the essential difference between these two is that the sample paths of the random
telegraph signal are discontinuous, while those of the Ornstein-Uhlenbeck process
are not. If (4.1.1) is to be regarded as a real differential equation, in which £(¢) is
not white noise with a delta function correlation, but rather a noise with a finite
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correlation time, then the choice of a continuous function for £(t) seems essential to
make this equation realistic: we do not expect dx/dt to change discontinuously. The
limit as ¥ — oo of the correlation function (4.1.3) is clearly the Dirac delta function

since

T % ety =1 . (4.1.4)
and fort # t/,

lim Le 1=, (4.1.5)

y—0a

This means that a possible model of the £(¢) could be obtained by taking some
kind of limit as y — oo of the Ornstein-Uhlenbeck process. This would correspond,
in the notation of Sect. 3.8.4, to the limit k — co with D = k2.

This limit simply does not exist. Any such limit must clearly be taken after cal-
culating measurable quantities. Such a procedure is possible but too cumbersome to
use as a calculational tool.

An alternative approach is called for. Since we write the differential equation
(4.1.1), we must expect it to be integrable and hence must expect that

u(t) = [dr &), (4.1.6)
0

exists.
Suppose we now demand the ordinary property of an integral, that () is a contin-
uous function of #. This implies that u(t) is a Markov process since we can write

u(t) = [ds £s) + [ ds &(s). @4.1.7)
0 t
= lim [ T ds £)] + [ds &), 4.1.8)
e-0% g t

and for any & > 0, the £(s) in the first integral are independent of the £(s) in the second
integral. Hence, by continuity, u(t) and w(#’) — u(t) are statistically independent and
further, u(t) — u(r) is independent of u(#”’) for all < ¢. This means that u(t’) is fully
determined (probabilistically) from the knowledge of the value of u() and not by any
past values. Hence, u(r) is a Markov process.

Since the sample functions of u(t) are continuous, we must be able to describe u(t)
by a Fokker-Planck equation. We can compute the drift and diffusion coefficients for
this process by using the formulae of Sect. 3.5.2. We can write

t+At
Wt + A1)~ ug | [uo, 1) = [ &(s)ds) =0, (4.1.9)
t
and
t+At t+At
([t + A = uoP | [uo, 1) = [ ds [ ds'{€(s)E(s)), (4.1.10)
t t
+At t+At

= [ds [ ds'é(s—s') = At. 4.1.11)
t t
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This means that the drift and diffusion coefficients are
(ult + At) — up | [ug, 11)
At

([t + A1) — w0l [ (o, 11) _
At

The corresponding Fokker-Planck equation is that of the Wiener process and we can

write

Ofrf(t')dt' =u(t) = W(t). (4.1.14)

A(up,1) = Ein»o =0, (4.1.12)

B(zq),t):Al}'an’O l. (4.1.13)

Thus, we have the paradox that the integral of £(t) is W(t), which is itself not dif-
ferentiable, as shown in Sect.3.8.1. This means that mathematically speaking, the
Langevin equation (4.1.1) does not exist. However, the corresponding integral equa-
tion

x() — x(0) = fra[x(s), slds + frb[x(s), slé(s)ds, 4.1.15)
0 0

can be interpreted consistently.
We make the replacement, which follows directly from the interpretation of the
integral of £(r) as the Wiener process W(t), that

dW(t) = W(t +dt) - W) = &(ndr (4.1.16)

and thus write the second integral as
t
J blx(s), sldW(s) , (4.1.17)
0

which is a kind of stochastic Stieltjes integral with respect to a sample function W(z).
Such an integral can be defined and we will carry this out in the next section.

Before doing so, it should be noted that the requirement that u(s) be continu-
ous, while very natural, can be relaxed to yield a way of defining jump processes
as stochastic differential equations. This has already been hinted at in the treatment
of shot noise in Sect. 1.5.1. However, it does not seem to be nearly so useful and will
not be treated in this book. The interested reader is referred to [4.1].

As a final point, we should note that one normally assumes that £(f) is Gaus-
sian, and satisfies the conditions (4.1.2) as well. The above did not require this: the
Gaussian nature follows in fact from the assumed continuity of u(¢). Which of these
assumptions is made is, in a strict sense, a matter of taste. However, the continuity of
u(t) seems a much more natural assumption to make than the Gaussian nature of &),
which involves in principle the determination of moments of arbitrarily high order.

4.2 Stochastic Integration
4.2.1 Definition of the Stochastic Integral

Suppose G(t) is an arbitrary function of time and W(r) is the Wiener process. We
define the stochastic integral f' G(#')dW(r') as a kind of Riemann_Stisltiac intmreal



80 4. The Ito Calculus and Stochastic Differential Equations

P j
.
!

fy 4 1£) 13 Iy ts t
T T2 73 Ts Tu

Fig. 4.1. Partitioning of the time interval used in the definition of stochastic integration

Namely, we divide the interval [t, 7] into n subintervals by means of partitioning
points (as in Fig. 4.1)

lhSHSh < <t ST, 4.2.1)
and define intermediate points 7; such that
L ST <. 4.2.2)
The stochastic integral f,; G(t")dW(?') is defined as a limit of the partial sums
n
Sp= E] G@IW@) ~ W(tiy)). (4.2.3)
=

It is heuristically quite easy to see that, in general, the integral defined as the limit
of S, depends on the particular choice of intermediate point t;. For example, if we
take the choice of G(r;) = W(r;),

($a) = (  WEWG) - Wit ). (4.24)
= §1 [min(r;, ) — min(r;, £i1)], 4.2.5)
- é (i—ti). (4.2.6)

If, for example, we choose for all i
Ti=ai+( -t O<a< 1), 4.2.7)
then (S.) = 33t~ 1)@ = (¢ - e, 4.2.8)

So that the mean value of the integral can be anything between zero and (t = 1),
depending on the choice of intermediate points.
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4.2.2 Ito Stochastic Integral

The choice of intermediate points characterised by @ = 0, that is the choice
T =t (4.2.9)

defines the /to stochastic integral of the function G(¢) by
t n
JG(t)dW(t') = ms-lim { z;] Glt-n[W(L) - W(ti)]), (4.2.10)
7 n—o0 i=
By ms-lim we mean the mean square limit, as defined in Sect. 2.9.2.

4.2.3 Example ft; W(t')dW(t')

An exact calculation is possible. We write [writing W; for W(t,)]

Su= 3 Wr(W = Wiy) = 5 Wi AW, 42.12)
i=1 i=1

=3 :Z’:I[(W'—] +AW)? = (Wio))? - (AW;)?], (4.2.13)

= WO - W@l - § B Wy, “42.14)

We can calculate the mean square limit of the last term. Notice that
(ZAW2) = (W= W) = 5t = ) = 1= 1. (.2.15)
Because of this,
([ZWi=wer? @ =w2T) = (2w - Wiy
+2 ZWi= Wit (W) = Wjet)® = 20t = 10) SOV, = Wict) + (1 = 10)%).

i<j
(4.2.16)

Notice the W; — W,_; is a Gaussian variable and is independent of W;—W;_,. Hence,
we can factorise. Thus,

(Wi = Wit (W) = W)y = (6= 1)t — t1o1), 4.2.17)
and also, using the formula (2.8.7) for the fourth moment of a Gaussian variable
(Wi = Wie)*y = 3((W; = Wi)2)? = 3t — 1,12, (4.2.18)

which combined with (4.2.17) gives
([zow - Wiy - - o] )
=250 =t + Tl = ti) = ¢ = )t — 1) — (¢ ~ 10)],
i ij

=2X(ti~11)" > 0 as n— oo, (4.2.19)
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Thus,
ms-lim (W, - W_)2 =t — 4, (4.2.20)

n—o0 i

by definition of the mean square limit, so

W) dW(E') = 3 [W(e)* - W(te)? - (t - 19)] . 4.2.21)
Comments
i) (’f WO dW (@) = JKWO) = (W(tg)) - (1 = 10)] = 0. (4.222)

This is also obvious by definition, since the individual terms are (W,_|AW,),
which vanishes because AW, is statistically independent of Wi_1, as was demon-
strated in Sect. 3.8.1.

ii) The result for the integral is no longer the same as for the ordinary Riemann-
Stieltjes integral in which the term (t — 1) would be absent. The reason for this
is that [W(t + Af) - W(t)| is almost always of the order V%, so that in contrast to
ordinary integration, terms of second order in AW(z) do not vanish on taking the
limit.

4.2.4 The Stratonovich Integral

An alternative definition was introduced by Stratonovich [4.2] as a stochastic integral
in which the anomalous term (t—19) does not occur. We define this fully in Sect. 4.4—
in the cases considered so far, it amounts to evaluating the integrand as a function of
W(t) at the value %[W(t[) + W(ti-1)]. Tt is straightforward to show that

8) JW@)aW) = ms lim Z] w[wm W), 4223
= WO - W), 42.24)

However, the integral as defined by Stratonovich [which we will always designate
by a prefixed (S) as in (4.2.23)] has no general relationship with that defined by Ito.
That is, for arbitrary functions G(¢), there is no connection between the two integrals.
[I.n the case, however, where we can specify that G(t) is related to some stochastic
differential equation, a formula can be given relating one to the other, see Sect. 4.4].

4.2.5 Nonanticipating Functions

The concept of a nonanticipating function can be easily made quite obscure by com-
plex Dotation, but is really quite simple. We have in mind a situation in which all
functions can be expressed as functions or functionals of a certain Wiener process

;’V(t) through the mechanism of a stochastic differential (or integral) equation of the
orm
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x(t) — x(tp) = f alx(t'),']dt" + f blx(t"), ' 1dW(t'). (4.2.25)
to Iy
A function G(t) is called a nonanticipating function of t if G(t) is statistically in-
dependent of W(s) — W(r) for all s and ¢ such that ¢ < s. This means that G() is
independent of the behaviour of the Wiener process in the future of 7. This is clearly
a rather reasonable requirement for a physical function which could be a solution of
an equation like (4.2.25) in which it seems heuristically obvious that x(¢) involves
W(¢) only for ¢’ < ¢.
For example, specific nonanticipating functions of ¢ are:

i) W),
t
ii) fFIW())dr,

iii) f’F[W(ﬂ)]dW(r'),
0}

t
iv) [G()adr,
'°, when G(¢) is itself a nonanticipating function. (4.2.26)
v) [G(")dW(),
fo

Results (iii) and (v) depend on the fact that the Ito stochastic integral, as defined in
(4.2.10), is a limit of the sequence in which only G(t') for ¢’ < t and W(¢) for ¢ < ¢
are involved.

The reasons for considering nonanticipating functions specifically are:

i) Many results can be derived, which are only true for such functions;

ii) They occur naturally in situations, such as in the study of differential equations
involving time, in which some kind of causality is expected in the sense that the
unknown future cannot affect the present;

iii) The definition of stochastic differential equations requires such functions.

4.2.6 Proof that dW(¢)? = dt and dW(£)**N = 0

The formulae in the heading are the key to the use of the Ito calculus as an ordinary
computational tool. However, as written they are not very precise and what is really
meant is that for an arbitrary nonanticipating function G(t)

t
JIAWE PN G(') = ms-lim 3, G, AW |
I n—o00 i

t
JdrG(’y, for N=0,
= fo 4.2.27)
0, for N>0.

The proof is quite straightforward. For N = 0, let us define



84 4. The Ito Calculus and Stochastic Differential Equations

1= lim ([ 3G (aW2 - a)[) (4.2.28)

n—oo

— 1 2 2 2
= lim {(z Gi)® (AW? = ALY + 5,261 G (AW? — Ary) (AW? At,.))},

n—eo 1>]

(4.2.29)

The horizontal braces indicate factors which are statistically independent of each
other because of the properties of the Wiener process, and because the G; are values
of a nonanticipating function which are independent of all AW; for j > i.

Using this independence, we can factorise the means, and also using

i) (AW}) = Ay,
i) ((AW? — Aty = 2A¢ (from Gaussian nature of AW,),

we find
I=2lim [ z A(Gia . (4.2.30)
Under reasonably mild conditions on G(¢) (e.g., boundedness), this means that
ms-lim ( z GioiAW? - z GiiAt) =0, (4.2.31)
and since
rr;ls_-’lolom 2 Gt = rj,'dt'G(t’) , (4.2.32)
i 0
we have
1 1
’{[dW(t’)]zG(t' )= r{dr’G(r' ). (4.2.33)
Comments

i) The proof [ G(t)[dW(®)]**N = 0 for N > 0 is similar and uses the explicit
. expressions for the higher moments of a Gaussian given in Sect.2.8.1.
11) dW(#) only occurs in integrals so that when we restrict ourselves to nonantici-
pating functions, we can simply write
aAw()? = dt, (4.2.34)
awe?’*N =0, W>0). (4.2.35)
iii) The results are only valid for the Ito integral, since we have used the fact that
AW, is independent of G;_;. In the Stratonovich integral,
AW; = W(t) ~ W(ti1) (4.2.36)
Gioi = G4t + 1), (4.2.37)

4.2 Stochastic Integration 85

and although G(¢) is nonanticipating, this is not sufficient to guarantee the inde-
pendence of AW;, and G;_; as thus defined.
iv) By similar methods one can prove that

1
[G({'ydt dW(') = ms-lim }, G, | AW,At; = 0, (4.2.38)

n—o
ty

and similarly for higher powers. The simplest way of characterising these results is
to say that dW(¢) is an infinitesimal order of '7 and that in calculating differentials,
infinitesimals of order higher than 1 are discarded.

4.2.7 Properties of the Ito Stochastic Integral

a) Existence: One can show that the Ito stochastic integral f,; G(Y)dW(') exists
whenever the function G(t') is continuous and nonanticipating on the closed interval

[to, t] [4.3].

b) Integration of Polynomials: We can formally use the result of Sect. 4.2.6:

AW = [W() + dW(D]" = W(t)" = z] (’;} W) dW ()", (4.2.39)
and using the fact that dW(z)" — 0 for all » > 2,

=nW(@)"" dW() + ”(”T'l) w2 dr, (4.2.40)
so that

’{’W(r’)" dw(t’) = ’%[W(t)"” - W) - gi{' w'y'dr . (4.2.41)

¢) Two Kinds of Integral: We note that for each G(f) there are two kinds of integrals,
namely,

t t

JG({')dt and [G@E')dW('), (4.2.42)
to fo

both of which occur in the previous equation. There is, in general, no connection
between these two kinds of integral.

d) General Differentiation Rules: In forming differentials, as in (b) above, one
must keep all terms up to second order in dW(z). This means that, for example,

d{exp[W()]} = exp[W(t) + dW(¢)] - exp[W(#)], (4.2.43)
= exp[W@I[dW () + 1aw(®?], (4.2.44)
= expW)][dW () + di]. (4.2.45)
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For an arbitrary function

_of 13 2, Of 1 82f
dfiwW), 1] = 5 dr+ 552 @ + S W@ + im[dW(t)]z
2
“f
and we use
WW@e))? - dt, (4.2.47)
dtdW(t) - 0, [Sect. 4.2.6, comment (iv)] (4.2.48)
@n? o, (4.2.49)
and all higher powers vanish, to arrive at
el of af
AR S| |25 dn el —
fIW(@), 1] ( o aWZ) dr + 5 V@) (4.2.50)
e) Mean Value Formula: For nonanticipating G(t),
t
Gt")dwW('))=0.
<,{ @) aw()) 4.2.51)

Proof: Since G(z) is nonanticipating, in the definition of the stochastic integral,
( ZGr1AW,) = S(GiaXAW) = 0. (4.2.52)

We know from Sect.2.9.5 that operations of ms-lim and ( ) may be interchanged.
Hence, taking the limit of (4.2.52), we have the result.

. This result is not true for Stratonovich’s integral, since the value of G- is chosen
in the middle of the interval, and may be correlated with AW,

? qurelation Formula: If G(r) and H(t) are arbitrary continuous nonanticipating
unctions,

t t
( JG@) W) [HP) aw(¢)) = KGeHEY dr . (4.2.53)
0 o fo

Proof: Notice that
(2618w, 5 1, aw;)
! J

= <Z G,~_1H‘_1(AW,~)2) + ( gjj(Gi_|H‘_1 +Gj_H,_, )AWjAWi) . (4.2.54)
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In the second term, AW; is independent of all other terms since Jj < i, and G and
H are nonanticipating. Hence, we may factorise out the term (AW;) = 0 so that this
term vanishes. Using

(AW?) = Aty (4.2.55)

and interchanging mean and limit operations, the result follows.
g) Relation to Delta-Correlated White Noise: Formally, this is equivalent to the
idea that Langevin terms £(¢) are delta correlated and uncorrelated with F- (t) and G(¢).
For, rewriting

aw(t) — &(fdr, (4.2.56)

it is clear that if F(f) and G(r) are nonanticipating, &(¢) is independent of them, and
we get

[de [ ds'(GuYH W) = | [ e ds (G WEW ).

fo fo to to

= f dr{G(:")H(t")), (4.2.57)
fo

which implies
(EDEs) = 6(z—5). (4.2.58)

An important point of definition arises here, however. In integrals involving delta
functions, it frequently occurs in the study of stochastic differential equations that
the argument of the delta function is equal to either the upper or the lower limit of
the integral, that is, we find integrals like

I = fdrf(r)é(t— t), (4.2.59)
or
I, = Ifzdzf(t)é(r— B). (4.2.60)
h

Various conventions can be made concerning the value of such integrals. We will
show that in the present context, we must always make the interpretation

Iy = f(n), (4.2.61)
L=0, (4.2.62)

corresponding to counting all the weight of a delta function at the lower limit of an
integral, and none of the weight at the upper limit. To demonstrate this, note that

( ftG(z’)dW(t')[ fH(s')dW(s')]) =0. (4.2.63)
fo to

This follows, since the function defined by the integral inside the square bracket
is, by Sect.4.2.5 comment (v), a nonanticipating function and hence the complete
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integrand, [obtained by multiplying by G(¢') which is also nonanticipating] is itself
nonanticipating. Hence the average vanishes by the result of Sect. 4.2.7e.

Now using the formulation in terms of the Langevin source £(¢), we can rewrite
(4.2.63) as

t r
fdt [ds'{G({')H(s')o(t' —5') =0, (4.2.64)
to (]
which corresponds to not counting the weight of the delta function at the upper limit.
Consequently, the full weight must be counted at the lower limit.
This property is a direct consequence of the definition of the Ito integral as in
(4.2.10), in which the increment points “towards the future”. That is, we can interpret

dW(@t) = Wt +dt) - W(Q). (4.2.65)

In the case of the Stratonovich integral, we get quite a different formula, which is by
no means as simple to prove as in the Ito case, but which amounts to choosing

I = 1f(n),
L = 3 f(r).

This means that in both cases, the delta function occurring at the limit of an inte-
gral has half its weight counted. This formula, although intuitively more satisfying
than the Ito form, is more complicated to use, especially in the perturbation theory
of stochastic differential equations, where the Ito method makes very many terms
vanish.

} (Stratonovich) (4.2.66)

4.3 Stochastic Differential Equations (SDE)

We concluded in Sect. 4.1, that the most satisfactory interpretation of the Langevin
equation

dx -
= a(x, 1) + b(x, &), 4.3.1)

is a stochastic integral equation
I t
X - x(0) = Ofdt'a[x(t'), U1+ [AW()b[x(),1]. (43.2)
0

Unfortunately, the kind of stochastic integral to be used is not given by the reasoning
of Sect. 4.1. The Ito integral is mathematically and technically the most satisfactory,
put it is not always the most natural choice physically. The Stratonovich integral
is the natural choice for an interpretation which assumes &(t) is a real noise (not a
yvhite noise) with finite correlation time, which is then allowed to become infinites-
{mally small after calculating measurable quantities. Furthermore, a Stratonovich
Inierpretation enables us to use ordinary calculus, which is not possible for an Ito
Interpretation.

4.3 Stochastic Ditterential bquations (dULk) 5y

1

a(x;, t;) At;

f
b(x;, ;) AW(1;

N 1 ty 15 to t

~

o 14

Fig. 4.2. lllustration of the Cauchy-Euler procedure for constructing an approximate solution
of the stochastic differential equation dx(t) = a[x(t), ]dt + b[x(t), t]dW (1)

From a mathematical point of view, the choice is made clear by the near impossi-
bility of carrying out proofs using the Stratonovich integral. We will therefore define
the Ito SDE, develop its equivalence with the Stratonovich SDE, and use either form
depending on circumstances. The relationship between white noise stochastic differ-
ential equations and the real noise systems is explained in Sect. 8.1.

4.3.1 Ito Stochastic Differential Equation: Definition

A stochastic quantity x(¢) obeys an Ito SDE written as
dx(r) = a[x(r), 1] dt + b[x(1), 1] dW(2) , (4.3.3)

if for all ¢ and 1y,
x(t) = x(to) + f alx(t"),t'1dr’ + f blx(?),!'1dW(). 4.3.4)
to fo

Before considering what conditions must be satisfied by the coefficients in (4.3.4),
it is wise to consider what one means by a solution of such an equation and what
uniqueness of solution would mean in this context. For this purpose, we can consider
a discretised version of the SDE obtained by taking a mesh of points #; (as illustrated
in Fig. 4.2) such that

lo<h<bh<- <t <t,=t, 4.3.5)

and writing the equation as

Xig1 = Xi + a(x;, t)At; + b(x;, t;)AW; . (4.3.6)
Here,

x; = x(t),

Ati =t —t, 4.3.7)

AW, = W(ti. ) - W().
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a) Cauchy-Euler Construction of the Solution of an Ito SDE: We see from (4.3.6)
that an approximate procedure for solving the equation is to calculate x;,; from the
knowledge of x; by adding a deterministic term

a(x;, t;)At;, (4.3.8)

and a stochastic term
bx;, t)AW; . (4.3.9)

The stochastic term contains an element AW;, which is the increment of the Wiener
process, but is statistically independent of x; if

i) xg is itself independent of all W(¢) — W(to) for t > 1y (thus, the initial conditions
if considered random, must be nonanticipating), and

i) a(x, t) is a nonanticipating function of ¢ for any fixed x.

Constructing an approximate solution iteratively by use of (4.3.6), we see that X; 18
always independent of AW; for j > i.

The solution is then formally constructed by letting the mesh size go to zero. To
say that the solution is unique means that for a given sample function W(¢) of the
random Wiener process W(z), the particular solution of the equation which arises is
unique. To say that the solution exists means that with probability one, a solution
exists for any choice of sample function W(z) of the Wiener process W(z).

This method of constructing a solution is called the Cauchy-Euler method, and can
be used to generate simulations. However, there are significantly better algorithms,
as is explained in Chap. 10.

b) Existence and Uniqueness of Solutions of an Ito SDE: Existence and unique-
ness will not be proved here. The interested reader will find proofs in [4.3]. The

conditions which are required for existence and uniqueness in a time interval [fy, T]
are:

i) Lipschitz condition: a K exists such that
laCx, 1) = ay, O] + [b(x, ) - b(y, )] < K]x -y, (4.3.10)

for all x and y, and all ¢ in the range [fy, T].

ii) Growth condition: a K exists such that for all ¢ in the range [ty, T],
laCx, O + 1b(x, )2 < KX(1 + |xP). 4.3.11)

Under these conditions there will be a unique nonanticipating solution x(t) in the
range [ty, T].

Almost every stochastic differential equation encountered in practice satisfies the
Lipschitz condition since it is essentially a smoothness condition. However, the
growth condition is often violated. This does not mean that no solution exists; rather,
it means the solution may “explode” to infinity, that is, the value of x can become
infinite in a finite time; in practice, a finite random time. This phenomenon occurs in
ordinary differential equations, for example,
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8% _ 143 (4.3.12)
dr 2

has the general solution with an initial condition x = xq at ¢ = 0,
x(t) = (—at + 1/xg)""2. (4.3.13)

If a is positive, this becomes infinite when xg = (af)"'/? but if « is negative, the
solution never explodes. Failing to satisfy the Lipschitz condition does not guarantee
the solution will explode. More precise stability results are required for one to be

certain of that [4.3].

4.3.2 Dependence on Initial Conditions and Parameters

In exactly the same way as in the case of deterministic differential equations, if the
functions which occur in a stochastic differential equation depend continuously on
parameters, then the solution normally depends continuously on that parameter. Sim-
ilarly, the solution depends continuously on the initial conditions. Let us formulate
this more precisely. Consider a one-variable equation

dx = a(d, x,t)dt + b(A, x,t) dW(¢), (4.3.14)
with initial condition
x(to) = c(A), (4.3.15)
where A is a parameter. Let the solution of (4.3.14) be x(4, t). Suppose
i) s%—_l'llr:l c(d) = c(dg), (4.3.16)
ii) Forevery N >0
lim { sup [la(A, x,t) = a(o, x, 0] + (A, x, 1) = b(Ao, x, r)|]} =0,

A= Lrelty, T, o<V
4.3.17)
iii) There exists a K independent of A such that
la(d, x, )2 + b4, x, )P < K2(1 + |2)). (4.3.18)
Then,
st-lim{ sup |x(4,1) —x(,lo,t)l} =0. (4.3.19)
A= e, 7)

For a proof see [4.1].

Comments

i) Recalling the definition of stochastic limit, the interpretation of the limit (4.3.1'9)
is that as 1 — Ay, the probability that the maximum deviation over any finite
interval [to, T'] between x(A, ¢) and x(1o, ¢) is nonzero, goes to zero.

Check ii)
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ii) Dependence on the initial condition is achieved by letting a and b be independent
of A.

iii) The result will be very useful in justifying perturbation expansions.

iv) Condition (ii) is written in the most natural form for the case that the functions
a(x, 1) and b(x,1) are not themselves stochastic. It often arises that a(x,t) and
b(x, 1) are themselves stochastic (nonanticipating) functions. In this case, condi-
tion (ii) must be replaced by a probabilistic statement. It is, in fact, sufficient to
replace lim by st-lim.

A=Ay

A=A

4.3.3 Markov Property of the Solution of an Ito SDE

We now show that x(t), the solution to the stochastic differential equation (4.3.4),
is a Markov Process. Heuristically, the result is obvious, since with a given initial
condition x(ty), the future time development is uniquely (stochastically) determined,
that is, x(¢) for ¢ > ¢, is determined only by

i) The particular sample path of W(¢) for ¢ > #5;

i) The value of x(zp).
Since x(¢) is a nonanticipating function of ¢, W(¢) for t > to is independent of x(¢) for
t < ty. Thus, the time development of x(¢) for ¢ > 1, is independent of x(¢) for ¢ < f,

provided x(#p) is known. Hence, x(r) is a Markov process. For a precise proof see
[4.3].

4.3.4 Change of Variables: Ito’s Formula

Consider an arbitrary function of x(z) : Flx(r)]. What stochastic differential equation
does it obey? We use the results of Sect. 4.2.6 to expand df[x(t)] to second order in
dw(z):

df[x0] = flx() + dx()] - flx(®)], (4.3.20)
= flx@)dx(t) + § f[x()dx(t? + ..., 4.3.21)

= f’[x(t)]{a[x(t), tldt + b[x(1), t]dW(t)} + 3 f" [x(0)1bx(2), 12 AW (1)2.
(4.3.22)

where all other terms have been discarded since they are of higher order. Now use
dW(t)? = dr to obtain

d L) = {alx@). 1 50 + $bLx(o), /£ L]} di + bLx(e), A L)) dW ().
(4.3.23)

This formula is known as Ito’s Jormula and shows that changing variables is not
given by ordinary calculus unless SLx(0)] is merely linear in x(z).
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Many Variables: In practice, Ito’s formula becomes very complicated and the eas-
iest method is to simply use the multivariate form of the rule that dW(r) is an in-
finitesimal of order % By similar methods to those used in Sect. 4.2.6, we can show
that for an n dimensional Wiener process W(t),

dW(t)dW,(t) = 6;;dt, (4.3.24a)
aw,o"?* =0, (N>0), (4.3.24b)
dWi(t) dt =0, (4.3.24c¢)
dr'? =0, (N>0). (4.3.24d)

which imply that dW(¢) is an infinitesimal of order % Note, however, that (4.3.24a)
is a consequence of the independence of dW;(¢) and dW(t). To develop Ito’s formula
for functions of an n dimensional vector x(t) satisfying the stochastic differential
equation

dx = A(x, t)dt + B(x, )dW(r), (4.3.25)

we simply follow this procedure. The result is

df(x) = { T Aix,00:f(x) + § TIBGx, 0BT (x, )];,0:0; (x)) dr
i ij
+ 2 Bij(x, 00 f(x) dW(t) . (4.3.26)
ij

4.3.5 Connection Between Fokker-Planck Equation and Stochastic Differential
Equation

a) Forward Fokker-Planck Equation: We now consider the time development of
an arbitrary f(x(z)). Using Ito’s formula

@flx@®) _ [dflx]\ _ 4
it —< @ >—dt(f[X(t)]),

= (alx(r), 119, f + LbLx(r), (%S ). 4.3.27)

However, x(z) has a conditional probability density p(x, t|xq, to) and

d
E<f [x()]) = [ dx f(x)3;p(x,t] x0,t0),
= [dx[a(x, 00 f + Lb(x, 1?0 flpx.t] x0,t0). (4.3.28)

This is now of the same form as (3.4.16) Sect. 3.4.1. Under the same conditions as
there, we integrate by parts and discard surface terms to obtain

Jdxf(xdip = [ dxf(x){ - dlatx,0p] + 82Lb(x, 1) pl}, (4.3.29)

and hence, since f(x) is arbitrary,
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0ip(x, 1| x0, 10) = =d,[a(x, p(x, t| xo. 10)] + L82[bx, 1) plx, 1| x0,10)] . (4.3.30)

We have thus a complete equivalence to a diffusion process defined by a drift coeffi-
cient a(x, t) and a diffusion coefficient b(x, 1)2.

The results are precisely analogous to those of Sect. 3.5.2, in which it was shown
that the diffusion process could be locally approximated by an equation resembling
an Ito stochastic differential equation.

b) Backward Fokker-Planck Equation—the Feynman-Kac Formula: Suppose
a function g(x, t) obeys the backward Fokker-Planck equation

0ig = —a(x,1)8.g - 1b(x,0d%g, (4.331)
with the final condition
gx,T) = G(x). (4.3.32)

If x(£) obeys the stochastic differential equation (4.3.3), then using Ito’s rule (adapted
appropriately to account for explicit time dependence), the function glx(t),t] obeys
the stochastic differential equation

dglx(t), £] = {Bug + alx(2), 1) 8. gLx(t), 1] + 3bLx(0), 1 8iglx(r), 11} dt

+ b[x(1), 110,91 x(2), 11 dW (), (4.3.33)

and using (4.3.31) this becomes

dglx(2),t] = blx(t), 1] .g[x(r), 11dW(t). (4.3.34)
Now integrate from ¢ to T, and take the mean

(9lx(T), T1) - {glx(2),1]) = < rfT blx(t'), 10.glx(t'), 1] dW(t’)> =0. (4.3.35)
Let the initial condition of the stochastic differential equation for x(#') and ¢ = ¢ be

x(t) = x, (4.3.36)
where x is a non-stochastic value, so that

(glx(®), 1]y = g(x,1). (4.3.37)
At the other end of the interval, use the final condition (4.3.32) to write

(9lx(T), T1) = (G[x(T)] | x(2) = x), (4.3.38)

Wherfa the notation on the right hand side indicates the mean conditioned on the initial
condition (4.3.36).

Putting these two together, the Feynman-Kac formula results:

(GI(D] | x(t) = x) = g(x,1), (4.3.39)
'Wl'le‘:re g(x,t) is the solution of the backward Fokker-Planck equation (4.3.31) with
Initial condition (4.3.32).

This formula is essentially equivalent to the fact that p(x, t| xo, tp) obeys the back-
ward Fokker-Planck equation in the arguments xo, o, as shown in Sect. 3.6, since

(GL(D)Ix(to) = x0) = [ dx G(x)p(x, T | x0,10). (4.3.40)
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4.3.6 Multivariable Systems

In general, many variable systems of stochastic differential equations can be defined
for n variables by

dx = A(x,t)dt + B(x,t) dW(1), (4.3.41)

where dW(t) is an n variable Wiener process, as defined in Sect.3.8.1. The many
variable version of the reasoning used in Sect.4.3.5 shows that the Fokker-Planck
equation for the conditional probability density p(x, t|xo, ) = p is

dp = - 3 0ilAix,0p] + 3 8:0,{(B(x,nB"(x, 0];jp}. (4.3.42)
i LJ

Notice that the same Fokker-Planck equation arises from all matrices B such that
BBT is the same. This means that we can obtain the same Fokker-Planck equation by
replacing B by BS where S is orthogonal, i.e., SST = 1. Notice that S may depend
on x(t).

This can be seen directly from the stochastic differential equation. Suppose S(¢) is
an orthogonal matrix with an arbitrary nonanticipating dependence on t. Then define

dv(t) = S(t)dw(t). (4.3.43)

Now the vector dV(¢) is a linear combination of Gaussian variables dW(¢) with coef-

ficients S(f) which are independent of dW(¢), since S(¢) is nonanticipating. For any

fixed value of S(¢), the dV(¢) are thus Gaussian and their correlation matrix is
@dvi)avt)) = /Z Sa®) S jm(2) (AW (t) AW,(2))

m

=X Su®)S g dt = 6;;dt, (4.3.44)
l

since S(¢) is orthogonal. Hence, all the moments are independent of S(f) and are the
same as those of dW(t), so dV(¢) is itself Gaussian with the same correlation matrix
as dW(t). Finally, averages at different times factorise, for example, if # > ¢ in

Zkl([dWi(t)S O [@Wi(E)S w()]") (4.3.45)

we can factorise out the averages of dW;(¢) to various powers since dW;(t) is inde-
pendent of all other terms. Evaluating these we will find that the orthogonal nature
of S(z) gives, after averaging over dW;(¢), simply

Zk)([dW,-(t)]’") ([dWi(t)S u(?)]"), (4.3.46)
which similarly gives ([dW;()]"'[dW,(*')]"). Hence, the dV(¢) are also increments of
a Wiener process. The orthogonal transformation simply mixes up different sample

paths of the process, without changing its stochastic nature.
Hence, instead of (4.3.41) we can write

dx = A(x,t)dt + B(x,)ST(1)S(t) dW(r), (4.3.47)
= A(x,t)dt + B(x,)ST(H) dV(), (4.3.48)

and since V(?) is itself simply a Wiener process, this equation is equivalent to
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dx = A(x, t)dt + B(x,)ST(r) dW(z), (4.3.49)

which has exactly the same Fokker-Planck equation (4.3.42).
We will return to some examples in which this identity is relevant in Sect.4.5.5.

4.4 The Stratonovich Stochastic Integral

The Stratonovich stochastic integral is an alternative to the Ito definition, in which
Ito’s formula, developed in Sect.4.3.4, is replaced by the ordinary chain rule for
change of variables. This apparent advantage does not come without cost, since in
Stratonovich’s definition the independence of a non-anticipating integrand G(r) and
the increment dW(¢) in a stochastic integral no longer holds. This means that incre-
ment and the integrand are correlated, and therefore to give a full definition of the
Stratonovich integral requires some way of specifying what this correlation is.

This correlation is implicitly specified in the situation of most interest, the case in
which the integrand is a function whose stochastic nature arises from its dependence
on a variable x(t) which obeys a stochastic differential equation. Since the aim is to
recover the chain rule for change of variables in a stochastic differential equation,
this seems a reasonable restriction.

4.4.1 Definition of the Stratonovich Stochastic Integral

Stratonovich [4.2] defined a stochastic integral of an integrand which is a function of
x(t) and t by

4 n
(8) [ GLee), {1aW(?) = ms-lim 3 Gl (xt6) + x(t-0). i J W) = W)
(44.1)

T'he Stratonovich integral is clearly related to a mid-point choice of 7; in the defi-
nltign of stochastic integration as given in Sect. 4.2.1, but clearly is not necessarily
equivalent to that definition. Rather, instead of evaluating x at the midpoint % (ti+ti_y),
the average of the values at the two time points is taken. Furthermore it is only the
dependence on x(z) that is averaged in this way, and not the explicit dependence on t.
However, if G(z,1) is differentiable in ¢, the integral can be shown to be independent
of the particular choice of value for ¢ in the range [t;_1, %]

4.4.2 Stratonovich Stochastic Differential Equation

‘It is possible to write a stochastic differential equation (SDE) using Stratonovich’s
integral

x(t) = x(to) + [ dr'alx(t'),t'] +(S) f dw("Blx(t'),1']. (4.4.2)

4.4 |Lhe dIraronovicn >locnasuc inegrdas v

a) Change of Variables for the Stratonovich SDE: The definition of the Straton-
ovich integral is such as to make the ordinary rules of calculus valid for change of
variables. This means, that for the Stratonovich integral, Ito’s formula (4.3.23) is

replaced by the simple calculus rule

(S)dfix(t)] = f'[x@®)] [a[x(t), ] dt + b[x(2), t] dW(t)} S (4.4.3)

This can be proved quite simply from the definition (4.4.1). The essence of the proof
can be explained by using the simple SDE

() dx(t) = B[x(1)] dW(2). (4.4.4)
In discretised form, this can be written
Xiv1 = Xi + B[ (xin1 + x)] (Wirt = Wi). (4.4.5)

To find the Stratonovich SDE for f[x(f)], we need only use the Taylor series expan-
sion of a function about a midpoint in the form
o0 f2n+|(x) a2n+l

fx+a) = f(x—a)+,§0—m

In expanding f(x;.;) we only need to keep terms up to second order, so we drop all
but the first two terms and write

(4.4.6)

Fxie1) = fO) + 13 Ceier + 2] (e = x0), 4.4.7)
= f/[4 it + %01 B[ (it + x)] Wisr = W)). (4.4.8)

This means that the Stratonovich SDE for f[x(#)] is
(S)dfIx(®)] = f'Ix(@®)] Blx()]dW(), (4.4.9)

which is the ordinary calculus rule. The extension to the general case (4.4.3) is
straightforward.

b) Equivalent Ito SDE: We shall show that the Stratonovich SDE is in fact equiva-
lent to an appropriate Ito SDE. Let us assume that x(t) is a solution of the Ito SDE

dx(t) = a[x(z), t]dt + b[x(t), 1] dW(2), (4.4.10)

and deduce the & and S8 for a corresponding Stratonovich equation of the form (4.4.2).
In both cases, the solution x(f) is the same function.
We first compute the connection between the Ito integral f,g dW(t)b[x(t'),t'] and

the Stratonovich integral (S) [ dW (2" )B[x(t'),']:
t
ONEUQEEQRIEDT HEORELS ), tiot |AW i) (4.4.11)

In (4.4.11) we write
x(t;) = x(t;i_y) + Ax(t;i—y), 4.4.12)
and use the Ito SDE (4.4.10) to write
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t
b)Y dW (' ‘
rof @)aw), (4.5.3)
is simply a linear combination of infinitesimal Gaussian variables. Further,
t
x(®) = (x0) + fa(t')drt',
0) ’{C( ) (4.5.4)
(since the mean of the Ito integral vanishes) and
([x®) = N [xCs) = (e = (x(e), x(5)) 4.5.5)
t N
= varlxo] + ( [ 6(') aW(') [ b(s") aw(s)), (4.5.6)
Iy fo
min(,s) )
=varlx] + [ [b(¢)]*dr, (4.5.7)
fo
where we have used the result (4.2.53) with, however,
N b(t'), t<t,
G() = { 0, !>t (4.5.8)
"o b(t'), v <s,
H{) = { 0, r>s. (4.5.9)

The process is thus completely determined.

4.5.2 Multiplicative Linear White Noise Process—Geometric Brownian
Motion

The equation
dx = cxdW(t), (4.5.10)

is known as a multiplicative white noise process because it is linear in x, but the

noise term” dW(r) multiplies x. It is also commonly know as geometric Brownian
motion.

We can solve this exactly by using Ito’s formula. Let us define a new variable by

y=logx, (45.11)
so that

dy:ldx—i(d =cd Le?

S 7 X)" =cdW(t)- 1ldr. (4.5.12)

This equation can now be directly integrated, so we obtain

YO = y(to) + c[W(r) - W(to)] - LcX(e — 1), (4.5.13)
and hence,

(1) = x(t0) exp {c[W(t) - W(to)] - 1 - 10)}. (4.5.14)

a) Mean va!ue: We can calculate the mean by using the formula for any Gaussian
variable z with zero mean

o
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(expz) = exp (4(z) , 4.5.15)
so that
() = (x(to)y exp [4¢X(t = 19) = 1Pt — 10)] = (xlt0)) . (4.5.16)

This result is also obvious from definition, since
d(x(1)) = (dx(t)) = (cx(t)dW(1)) = 0. (4.5.17)
b) Autocorrelation Function: We can also calculate the autocorrelation function
(O)x(5)) = (x(t0)*) {exp {cIW (1) + W(s) = 2W(t0)] - JcX(t + 5= 21q)}) |
= (x(t0)?) exp (LW + W(s) = 2W(t) ) — (¢ + 5 - 210)]} |
= (x(to)?) exp{*[t + 5 — 4o + 2 min(t, 5) - (¢ + 5 — 210)1}
= (x(t0)?) exp{c® min(t — to, s — t0)] . (4.5.18)

¢) Stratonovich Interpretation: The solution of this equation interpreted as a Stra-
tonovich equation can also be obtained, but ordinary calculus would then be valid.
Thus, instead of (4.5.12) we would obtain

(S)dy =cdW(), (4.5.19)
and hence,

x(t) = x(to) exp{c[W(¢) — W(t)]} . (4.5.20)
In this case,

(x(0)) = (x(t)) exp [ 42t~ 10)] , 4521)
and

(HOX(5)) = (x(t0 exp{ §Lt + 5 = 200 + 2 min(e — o, 5 - To)l}. 4522)

One sees that there is a clear difference between these two answers.

4.5.3 Complex Oscillator with Noisy Frequency

This is a simplification of a model due to Kubo [4.4] and is a slight generalisation of
the previous example for complex variables. We consider

dz .
d—f =i(w+ V2y&0)z, (4.5.23)

which formally represents a simple model of an oscillator with a mean frequency w
perturbed by a noise term £(t).
Physically, this is best modelled by writing a Stratonovich equation

(§)dz = i(wdr + \2ydw())z, (45.24)

which is equivalent to the Ito equation (from Sect. 4.4)
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Ax(t;) = alx(t;_,), Lie1] Aty + blx(t_y), L JAW (). (4.4.13)
Then, applying Ito’s formula, we can write
ﬁ[gl(x(ti) + x(ti )), ti—l] = ,B[X(ti—l) + 1 Ax(t;y), ti—l] ,
= Blin) + [t )8 Bt 1) + L6 ay)|yav,
+3b(t1)0Btr) AW, y) . (4.4.14)

(For simplicity., we write 5(z;) etc, instead of Blx(t:), ;] wherever possible). Putting
all these back in the original equation (4.4.10) and dropping as usual dz? dtdw(r)
and setting dW(t)? = dt, we find ’ ’

) [= Z’_:.B(ti—l){w(ti) - W)+ 1 2 b(ti-1)0, Bty )t; — 1, y) .

Hence we derive

L t
() TBUO.C1AWW) = [BIxE), 1 1aWC) + | [bixt), 19 Bl ¢ 1t

(4.4.15)

"I"his forml,lla giv.es a connection between the Ito and Stratonovich integrals of func-
tions B[x(¢’), ¢ ],.m which x(¢') is the solution of the Ito SDE (4.4.2). It does not give a
general connection between the Ito and Stratonovich integrals of arbitrary functions.

If we now make the choice

a(x, 1) = a(x, 1) - %b(x, 10.b(x, 1)

B(x,0) = b(x,1) (44.16)
we see that:
The Ito SDE
. dx = adt+bdW(r), (4.4.17)
1s the same as the Stratonovich SDE
(8)dx = (a~ Lbo,b)dt + baw(y), (4.4.18)

and conversely,

’_\
The Stratonovich SDE

(S)dx:adt+,BdW(t), (4.4.19)
is the same ag the Ito SDE
dx = (e + 1p0, B)dt +BdW(r). (4.4.20)
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¢) Many Variables: If a many variable Ito equation is
dx = A(x,t)dt + B(x,t) dW(z), 4.4.21)

then the corresponding Stratonovich equation can be shown similarly to be given by
replacing

AIb = A,’ - % Z}(BU(?LB,’/
3
B* = B. (4.4.22)

d) Fokker-Planck Equation: Corresponding to the Stratonovich SDE,
(§)dx = A’(x,t)dt + B*(x, 1) dW(1), (4.4.23)

we can, by use of (4.4.22) and the known correspondence (Sect. 4.3.6) between the
[to stochastic differential equation and Fokker-Planck equation, show that the equiv-
alent Fokker-Planck equation is

Oip = - X 0i{ASp) + | ZA 9:{B; 0, B3 1}, (4.4.24)
] LK

which is often known as the “Stratonovich form” of the Fokker-Planck equation. In
contrast to the two forms of the stochastic differential equation, the two forms of
Fokker-Planck equation have a different appearance but are (of course) interpreted
with the same rules—those of ordinary calculus. We will find later that the Stra-
tonovich form of the Fokker-Planck equation does arise very naturally in certain
contexts—see Sect. 8.3.

4.5 Some Examples and Solutions

4.5.1 Coefficients without x Dependence

The simple equation
dx = a(t)dt + b(t) dW(1), 4.5.1)

with a(z) and b(t) nonrandom functions of time, is solved simply by integrating
t t
x(t)=xo+ fa(t')dt' + [b(t')dW(). 4.5.2)
Iy Io

Here, xo can be either a nonrandom initial condition or may be random, but must be
independent of W (t) — W(zy) for ¢ > t,; otherwise, x(z) is not nonanticipating.

As constructed, x(t) is Gaussian, provided xp is either nonrandom or itself Gaus-
sian, since
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Fig. 4.3. Illustration of the decay of the mean ampli-
tude of a complex oscillator of as a result of dephasing.

dz = [(iw = y)dt +iy2y dW()lz. (4.5.25)
Taking the mean value, we see immediately that

d(z) .

D7 (iw=yX2), (4.5.26)

with the damped oscillatory solution

(z(1)) = expl(iw — y)r|(z(0)) . (4.5.27)

We shall shov.v fully in Sect. 8.3, why the Stratonovich model is more appropriate.
The most obvious way to see this is to note that &(t) would, in practice, be somewhat
smoother 'than a white noise and ordinary calculus would apply, as is the case in the
Stratonovich interpretation.

No_w in this case, the correlation function obtained from solving the original Stra-
tonovich equation is

(z(D)z(s)) = (2(0)*) exp[(iw — y)(t + 5) — 2y min(t, )] . (4.5.28)

In the limit ¢, s — oo, with t + 7 = s,
tli)rg(z(t +1)z(1) =0. (4.5.29)
However, the correlation function of physical interest is the complex correlation

@02 (9)) = (2(O))explic(t - 5) +i 2y [W() - W(9)]}),
= (2(0)P) explicw(t — 5) — Y[t + s — 2 min(, 5)]},
= (z(0)P) expliw(t - 5) - ¥t - s1]. (4.5.30)

Thus, L‘he complex correlation function has a damping term which arises purely from
the noise. It may be thought of as a noise induced dephasing effect, whereby the
phases of an ensemble of initial states with identical phases diffuse away from the
value wr arising from the deterministic motion, as illustrated in Fig.4.3. The mean
of the ensemble consequently decays, although the amplitude |z(¢)| of any member

of the ensemble is unchanged. For large time differences, z(¢) and z*(s) become in-
dependent.
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A realistic oscillator cannot be described by this model of a complex oscillator,
as discussed by van Kampen [4.5]. However the qualitative behaviour is very simi-
lar, and this model may be regarded as a prototype model of oscillators with noisy

frequency.
4.5.4 Ornstein-Uhlenbeck Process

Taking the Fokker-Planck equation given for the Ornstein-Uhlenbeck process in
Sect. 3.8.4, we can immediately write down the SDE using the result of Sect. 4.3.5:

dx = —kxdt + NDdW(), (4.5.31)
and solve this directly. Putting

y=xe, (4.5.32)
then

dy = (dx)d(e) + (dx) e + xd(e*)
= [—kx dt+ VD dW(t)] kel dt + [—kx dt + \/EdW(t)] e+ kx e dr.
(4.5.33)

We note that the first product vanishes, involving only df?, and dW(z) dt (in fact, it
can be seen that this will always happen if we simply multiply x by a deterministic
function of time). We get

dy = VD" dw(s), (4.5.34)
so that integrating and resubstituting for y, we get
t .
x(t) = x(0) e + VD [ " aw (). (4.5.35)
0
If the initial condition is deterministic or Gaussian distributed, then x(z) is clearly
Gaussian, with mean and variance
(x(0) = (xO)e™, (4.5.36)
t , 2
var{x(t)] = ({[x(O) — (x(0)]e™ + VD [ ™= aw(r))) ) (4.5.37)
0

Taking the initial condition to be nonanticipating, that is, independent of dW(z) for
t > 0, we can write using the result of Sect. 4.4f

t
var[x(t)] = var[x(0)] e + D f e gt
0

= (var[x(0)] - D/2k) e + D/2k. (4.5.38)

These equations are the same as those obtained directly by solving the Fokker-Planck
equation in Sect. 3.8.4, with the added generalisation of a nonanticipating random
initial condition. Added to the fact that the solution is a Gaussian variable, we also
have the correct conditional probability.
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The time correlation function can also be calculated directly and is,

1
(x(1), x(5)) = var[x(0)] ™ + D( [ &™) gy [ k=) dw(s")),
0 0
min(t,s)
— Var{x(())} c—/\(f+7) +D ]‘ e—k(f+s—2f') dr’ ,
0

_ D —k(t+5) D —k|t—s|
—[var{x(O)}—ﬁ]e e =l | (4.5.39)

Notice that if k£ > 0, as t, s — oo with finite |t — s|, the correlation function becomes
stationary and of the form deduced in Sect. 3.8.4.
In fact, if we set the initial time at —co rather than 0, the solution (4.5.35) becomes

1
x(t) = VD [ ™0 qw(r). (4.5.40)

in which the correlation function and the mean obviously assume their stationary
values. Since the process is Gaussian, this makes it stationary.

4.5.5 Conversion from Cartesian to Polar Coordinates

A model often used to describe an optical field is given by a pair of Ornstein-

Uhlenbeck processes describing the real and imaginary components of the electric
field, i.e.,

dE\(t) = —yE () dt + edW, (1), (4.5.41a)

dEy(t) = —yEy () dt + £dWs(1). (4.5.41b)
Itis of interest to convert to polar coordinates. We set

Ei(t) = a(t)cos¢(t), (4.5.42)

Ex(t) = a(t)sing(t), (4.5.43)
and for simplicity, also define

() =loga(r), (4.5.44)
so that

u(t) +ig(t) = log[E (1) + iEx(1)]. (4.5.45)

We then use the Ito calculus to derive
i+ i) = d(E, +iEy) _ [d(E, +iEy)P
E, + 1E, Z(E] + iE;g)2 ’
- Y(E +iEy) it eldWi(t) +1dWr(1)] X [dW,(t) + idW» ()]
E| +iE, (E\+iE)  2E +iE?
(4.5.46)

and noting dW, (1) dW(t) = 0, and dW,(z)® = dW,(1)? = dt, it can be seen that the
last term vanishes, so we find
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dlu(t) + ig(t)] = —ydt + gexp[—u(t) — ig(){dW;(t) + idW7 (1)} . (4.5.47)

We now take the real part, set a(f) = exp[u(?)] and using the Ito calculus find

da(t) = (—ya(t) + %) dt + & (dW, (1) cos ¢(1) + AW, (1) sin ¢(0)]) .

0
(4.5.48)
The imaginary part yields
d(t) = ——( = dW, (1) sin §(r) + dW, cos §(1)).. (4.5.49)
a(t)
We now define
dWu(f) = dW,(r)cos ¢(t) + dW,(t) sin (1), £5.50)
dW,(1) = —dW,(t) sin ¢(t) + dWa(r) cos (2) . @>

We note that this is an orthogonal transformation of the kind mentioned in Sect. 4.3.6,
so that we may take dW,(f) and dWy(t) as increments of independent Wiener pro-
cesses W, (1) and Wy(s).

Hence, the stochastic differential equations for phase and amplitude are

de(r) = %dw,,,(r), (4.5.51a)

da(t) = ( — ya(t) + ——Ez—)dt +edW,(1). (4.5.51b)
2a(t)
Comment. Using the rules given in Sect.4.4 (ii), it is possible to convert both the
Cartesian equation (4.5.41a, 4.5.41b) and the polar equations (4.5.51a, 4.5.51b) to
the Stratonovich form, and to find that both are exactly the same as the Ito form.
Nevertheless, a direct conversion using ordinary calculus is not possible. Doing so
we would get the same result until (4.5.47) where the term [¢?/2a(t)] dt would not be
found. This must be compensated by an extra term which arises from the fact that the
Stratonovich increments dW;(t) are correlated with ¢(t) and thus, dW,(t) and dWy(t)
cannot simply be defined by (4.5.49). We see the advantage of the Ito method which
retains the statistical independence of dW(t) and variables evaluated at time ¢.
Unfortunately, the equations in Polar form are not soluble, as the corresponding
Cartesian equations are. There is an advantage, however, in dealing with polar equa-
tions in the laser, whose equations are similar, but have an added term proportional
to a(t)? dt in (4.5.51b).

4.5.6 Multivariate Ornstein-Uhlenbeck Process

we define the process by the stochastic differential equation
dx(t) = —Ax(t)dt + BdW(), (4.5.52)

(A and B are constant matrices) for which the solution is easily obtained (as in
Sect.4.5.4):
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x(t) = exp(—At)x(0) + flexp[—A(t - )BdW(t'). (4.5.53)
0
The mean is
(x(£)) = exp(—=At){(x(0)). (4.5.54)

The correlation function follows similarly

(x(®), x"(5)) = ([x() — (x(E)][x(s) = (x(H]TY,
= exp(—At)(x(0), x"(0)) exp(-As)

min(t,s)

+ Of exp[—A(t — t')]1BB" exp[-AT(s - )] dt . (4.5.55)

The integral can be explicitly evaluated in certain special cases, and for particular
low-dimensional problems, it is possible to simply multiply everything out term by
term. In the remainder we set (x(0),xT(0) = 0), corresponding to a deterministic
initial condition, and evaluate a few special cases.

a) The Case AAT = ATA: In this case (for real A) we can find a unitary matrix S
such that

sst =1,

SAST = SATS' = diag(A), Ay,... A,). (4.5.56)
For simplicity, assume ¢ > s5. Then

(x(0), x7(s)) = STG(1, 9)S (4.5.57)
where

T
-~ [exp(=Ailt — ) — exp(~Ait — A;5)]. (4.5.58)
J

(BB)
(Gt )y = —

b) Stationary Variance: If A has only eigenvalues with positive real part, a station-
ary solution exists of the form

xs(1) = _{: exp[-A(t — t')]BdW (') . (4.5.59)
We have of course

(xs(1)) =0, (4.5.60)

(x5(t), xI(s)) = mjzr,S)exp[—A(t —')]1BBT exp[-AT(s — )] dt’ . 4.5.61)

Let us define the stationary covariance matrix o- by
o = (x5(1), x] (2)). (4.5.62)

This can be evaluated by means of an algebraic equation thus:
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t
Ao +cAT = [ Aexp[-A(t - ¢)]BB exp[-AT(t — )] dt’,
! T T T g
+ [ exp[-A(t - 1')]BB" exp[-A (1 —t')]A" dt’,

fod , T T ’ ’
= E{exp[—A(t—t)JBB exp[-A'(r—1)]}dr. (4.5.63)

Carrying out the integral, we find that the lower limit vanishes by the assumed posi-
tivity of the eigenvalues of A and hence only the upper limit remains, giving

Ac +0AT = BB, (4.5.64)

as an algebraic equation for the stationary covariance matrix.
c) Stationary Variance for Two Dimensions: We note that if A is a 2 X 2 matrix, it
satisfies the characteristic equation

A% —(TrA)A + (DetA) =0, (4.5.65)

and from (4.5.60) and the fact that (4.5.65) implies exp(—Ar) is a polynomial of
degree 1 in A, we must be able to write

o = aBB" + B(ABB" + BB"A") + yYABBTAT . (4.5.66)
Using (4.5.65), we find (4.5.64) is satisfied if

@+ (TrA)B — (DetA)y = 0, (4.5.67)

2B(DetA) + 1 =0, (4.5.68)

B+ (TrA)y =0. (4.5.69)

From which we have

(4.5.70)

_ (DetA)BBT + [A — (TrA)1BB"A — (Tr A)]
7= 2(Tr A)(DetA) '

d) Time Correlation Matrix in the Stationary State: From the solution of (4.5.60),
we see that if £ > s,

(o0, ¥7(5)) = expl-A(t - 5)] | expl~A(s - )]BB" exp[-AT(s — 1)) ',

=exp[-A( - 9)]o, t>s, (4.5.71a)
and similarly,
=oexp[-AT(s—1)], t<s. (4.5.71b)
This depends only on s — ¢, as expected of a stationary solution. Defining then
Ge(t — 5) = (x(D). xT (). (4.5.72)
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we see (remembering o~ = ¢'7) that
Gs(t—5) = [Gs(s — 0] (4.5.73)

e) Spectrum Matrix in Stationary State: The spectrum matrix turns out to be
rather simple. We define similarly to Sect. 1.5.2:

S(w) = % i e "Gy()dr, (4.5.74)
[ 4]
= El;r-{({exp[—(iw + A)Tlodr +_f oexpl(—iw + AT)T] d‘r}, (4.5.75)
= %[(A +iw) o+ (AT - iw)']. (4.5.76)
Hence,
(A +iw)S (W)AT —iw) = %(O'AT +Ao), 4.5.77)

and using (4.5.64), we get

S(w) = %(A +iw)"'BBT(AT - iw)~" . (4.5.78)

f) Regression Theorem: The result (4.5 .71a) is also known as a regression theorem
in that it states that the time development G(7) is for r > 0 governed by the same law
of time development of the mean, as in (4.5.54). It is a consequence of the Marko-

vian linear nature of the problem. The time derivative of the stationary correlation
function is

[Gs(z)] dl - <xS(Z)sxs (0))01 k)
dr dr
= ([-Axy(7)dt + BdW(7)], xsl 0)). (4.5.79)

Since T > 0, the increment dW(t) is uncorrelated with xST(O), this means that

d
E[Gs(r)] =-AGy(7). (4.5.80)

Thus, computation of G,(r) requires the knowledge of G4(0) = ¢ and the time de-
velopment equation of the mean. This result is similar to those of Sect. 3.7.4.

4.5.7 The General Single Variable Linear Equation

a) Homogeneous Case: We consider firstly the homogeneous case
dx = [b(t)dt + g(t) AW (D)]x, (4.5.81)

and using the usual Ito rules, write
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y =logx, (4.5.82)
so that
dx _de (P (4.5.83)
dy = — — == =h(t)dt + g(t)dW(t) — 59(t") dt, 5.8
x 22
and integrating and inverting (4.5.82), we get
1 t ,
x(t) = O exp {[[6(0) = 197 ]dr + [ 9 aW()}, (4.5.84)
0
= x(0) ¢(1), (4.5.85)

which serves to define ¢(?).
We note that [using (4.5.15)]

(X)) = ([xO)]") { exp {n ({'[b(r’) ~ 39t V) dl +n [ g@)aW(e)))
= ([x(0)]")exp {n frb(t’)dr' +in(n-1) ({'g(t')z dr}. (4.5.86)
0

b) Inhomogeneous Case: Now consider

dx = [a(t) + b(t)x]dt + [f(t) + g(t)x] AW (2), (4.5.87)
and write
2(t) = x(t)[p(0]™" (4.5.88)

with ¢(¢) as defined in (4.5.85) and a solution of the homogeneous equation (4.5.81).
Then we write

dz = dx[p@®)]”" + xd[p()™"] + dxd[¢(t)"']. (4.5.89)
Noting that d[¢(t)]™! = —d@(t)[p()]72 + [de(t))*[#(¢)]~> and using Ito rules, we find
dz = {[a(t) - fg(O]dt + f(t) AW(D))p(t)™" (4.5.90)

which is directly integrable. Hence, the solution is
X(1) = pO(0) + [6)[a(r) - FO )@V df’ + F£)dW()). (4.5.91)
0

¢) Moments and Autocorrelation: It is better to derive equations for the moments
from (4.5.87) rather than calculate moments and autocorrelation directly from the
solution (4.5.91).

For we have

dlx(t)"] = nx(t)""'dx(t) + Ln(n - 1)x(t)"2[dx(0)]?,

= nx(t)""'dx(®) + Sn(n — Dx(0)"72[f () + g(Ox(D]* dt . (4.5.92)
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Hence,

d
E(x(t)") = (x(t)")[nb(t) + Ltn(n - 1)g(t)*],

+ (0" D lnal) + nn - 1) f(Og)],
+{(x(0)"2Yhnn = 1) () (4.5.93)

These equations from a hierarchy in which the nth equation involves the solutions of
the previous two, and can be integrated successively.

4.5.8 Multivariable Linear Equations

a) Homogeneous Case: The equation is
dx(t) = [B(t)dt + 5, Gie)dWi(0)|x(z), (4.5.94)
where B(t), G(t) are matrices. The equation is not, in general, soluble in closed form
unless all the matrices B(t), G;(*') commute at all times with each other, i.e.
Gi)G(t') = Gi(t')Gi(r),
B(N)G(f') = Gy(t')B(1), (4.5.95)
B(#)B(t') = B()B(t).

In this case, the solution is completely analogous to the one variable case and we
have

x(t) = &(1)x(0), (4.5.96)
with
B(1) = exp ({ [Bo-1ix Git?]dt + f % Gi(t)awi(v)}. (45.97)
i 0 i

b) Inhomogeneous Case: We can reduce the inhomogeneous case to the homoge-
neous case in exactly the same way as in one dimension. Thus, we consider

dx(t) = [A() + B)x]dt,+ SF () + Git)x] dW(1), (4.5.98)
and write
y(t) =y 'x(), (4.5.99)

where (t) is a matrix solution of the homogeneous equation (4.5.94). We first have
to evaluate d[y~']. For any matrix M we have MM~! = 1, so, expanding to second
order, Md[M~"] + dMM~" + dMd[M-"] = 0.

Hence, d[M~"] = ~[M + dM]~'dM M~" and again to second order

diM™' ] = -M'dM M~ + M\ dM M~'dM M~ (4.5.100)
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and thus, since (¢) satisfies the homogeneous equation,

Ay =y - Bo + Zi;G,-(t)z] dr — };Gi(t)dW,(t)}, (4.5.101)
and, again taking differentials

dy(t) = wty ' {[A) - ;G,(z)F,(z)] di+ 3, F(t)aw(t)}. (4.5.102)
Hence,

x(t) = z//(t){x(O) + f'.//(t')" {lA0) - ZGueYFut')1dl + % F,-(t’)dW,(t')}} :
0 i
(4.5.103)

This solution is not very useful for practical purposes, even when the solution for the
homogeneous equation is known, because of the difficulty in evaluating means and
correlation functions.

4.5.9 Time-Dependent Ornstein-Uhlenbeck Process

This is a particular case of the previous general linear equation which is soluble.
It is a generalisation of the multivariate Ornstein-Uhlenbeck process (Sect. 4.5.6) to
include time-dependent parameters, namely,

dx(t) = —A(n)x(t)dt + B(t)dW(1) . (4.5.104)
This is clearly of the same form as (4.5.98) with the replacements
A() - 0,
B(1) - —A@),
(4.5.105)
LF@®dw() - B(t)dW(t),
Gi(t) - 0.

The corresponding homogeneous equation is simply the deterministic equation

dx(t) = —A(t)x(t) dt, (4.5.106)
which is soluble provided A()A(t') = A(#')A(z) and has the solution

x(t) = ¢(1)x(0), (4.5.107)
with

y() = exp| - OfrA(t’) ar|. (4.5.108)

Thus, applying (4.5.103),

t t t
x(t)=exp| - [A@)at Jx© + ({{exp [~ Jawas]Berawe). (4.5.109)
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This is very similar to the solution of the time-independent Ornstein-Uhlenbeck pro-
cess, as derived in Sect. 4.5.6, equation (4.5.53).

From this we have

(x(1)) =exp [ - f’A(t’) dt’](x(O)) , (4.5.110)
4]
(x(0), x" (1)) = exp [ - Of'A(r’ ) dr'](x(O), x(0)yexp [ - fAT(r' ) dt’]
0

+ Of dr’ exp| - [A(s)ds|BU")BT(t') exp [- AT (9)ds|.  @5.111)

The time-dependent Ornstein-Uhlenbeck process will arise very naturally in connec-
tion with the development of asymptotic methods in low-noise systems.

5. The Fokker-Planck Equation

In the next two chapters, the theory of continuous Markov processes is developed
from the point of view of the corresponding Fokker-Planck equation, which gives
the time evolution of the probability density function for the system. This chapter is
devoted mainly to single variable systems, since there are a large number of exact
results for single variable systems, which makes the separate treatment of such sys-
tems appropriate. The next chapter deals with the more general multivariable aspects
of many of the same issues treated one-dimensionally in this chapter.

The construction of appropriate boundary conditions is of fundamental impor-
tance, and is carried out in Sect.5.1 in a form applicable to both one-variable and
many-variable systems. A corresponding treatment for the boundary conditions on
the backward Fokker-Planck equation is given in Sect.5.1.2. The remaining of the
chapter is devoted to a range of exact results, on stationary distribution functions,
properties of eigenfunctions, and exit problems, most of which can be explicitly
solved in the one variable case.

We have already met the Fokker-Planck equation in several contexts, starting from
Einstein’s original derivation and use of the diffusion equation (Sect. 1.2), again as a
particular case of the differential Chapman-Kolmogorov equation (Sect. 3.5.2), and
finally, in connection with stochastic differential equations (Sect.4.3.5). There are
many techniques associated with the use of Fokker-Planck equations which lead to
results more directly than by direct use of the corresponding stochastic differential
equation; the reverse is also true. To obtain a full picture of the nature of diffusion
processes, one must study both points of view.

The origin of the name “Fokker-Planck Equation™ is from the work of Fokker
(1914) [5.1, 5.2] and Planck (1917) [5.2] where the former investigated Brownian
motion in a radiation field and the latter attempted to build a complete theory of
fluctuations based on it. Mathematically oriented works tend to use the term “Kol-
mogorov’s Equation” because of Kolmogorov’s work in developing its rigorous basis
[5.3]. Yet others use the term “Smoluchowski Equation” because of Smoluchowski’s
original use of this equation. Without in any way assessing the merits of this termi-
nology, I shall use the term “Fokker-Planck equation” as that most commonly used
by the audience to whom this book is addressed.



